What is the distance between #(3,-14,15)# and #(12,-21,16)#?

1 Answer
Apr 27, 2018

See a solution process below:

Explanation:

The formula for calculating the distance between two points is:

#d = sqrt((color(red)(x_2) - color(blue)(x_1))^2 + (color(red)(y_2) - color(blue)(y_1))^2 + (color(red)(z_2) - color(blue)(z_1))^2)#

Substituting the values from the points in the problem gives:

#d = sqrt((color(red)(12) - color(blue)(3))^2 + (color(red)(-21) - color(blue)(-14))^2 + (color(red)(16) - color(blue)(15))^2)#

#d = sqrt((color(red)(12) - color(blue)(3))^2 + (color(red)(-21) + color(blue)(14))^2 + (color(red)(16) - color(blue)(15))^2)#

#d = sqrt(9^2 + (-7)^2 + 1^2)#

#d = sqrt(81 + 49 + 1)#

#d = sqrt(131)#

Or

#d ~= 11.45#