What is the distance between (31,-201)(31,201) and (28,-209)(28,209)?

2 Answers
Jul 23, 2017

See a solution process below:

Explanation:

The formula for calculating the distance between two points is:

d = sqrt((color(red)(x_2) - color(blue)(x_1))^2 + (color(red)(y_2) - color(blue)(y_1))^2)d=(x2x1)2+(y2y1)2

Substituting the values from the points in the problem gives:

d = sqrt((color(red)(28) - color(blue)(31))^2 + (color(red)(-209) - color(blue)(-201))^2)d=(2831)2+(209201)2

d = sqrt((color(red)(28) - color(blue)(31))^2 + (color(red)(-209) + color(blue)(201))^2)d=(2831)2+(209+201)2

d = sqrt((-3)^2 + (-8)^2)d=(3)2+(8)2

d = sqrt(9 + 64)d=9+64

d = sqrt(73)d=73

Or

d = 8.544d=8.544 rounded to the nearest thousandth.

Jul 23, 2017

color(blue)(8.5448.544

Explanation:

:.y-y=(-201)-(-209)=8=opposite

:.x-x=31-28=3=adjacent

:.8/3=tantheta=2.666666667=69°26'38''

hypotenuse=distance

Distance:.=sectheta xx 3

Distance:.=sec69°26'38'' xx 3

Distance:.=2.848001248 xx 3=8.544003745

:.color(blue)(=8.544 to 3 decimals