What is the factored form of #y= -2x^2+2x+2#?

1 Answer
Nov 11, 2016

#y = -2(x-1/2 - sqrt(5)/2)(x-1/2 + sqrt(5)/2)#

Explanation:

Separate out the scalar factor #-2#, complete the square, then use the difference of squares identity.

The difference of squares identity can be written:

#a^2-b^2 = (a-b)(a+b)#

We use this with #a=(x-1/2)# and #b=sqrt(5)/2# as follows:

#y = -2x^2+2x+2#

#color(white)(y) = -2(x^2-x-1)#

#color(white)(y) = -2(x^2-x+1/4 - 5/4)#

#color(white)(y) = -2((x-1/2)^2 - (sqrt(5)/2)^2)#

#color(white)(y) = -2((x-1/2) - sqrt(5)/2)((x-1/2) + sqrt(5)/2)#

#color(white)(y) = -2(x-1/2 - sqrt(5)/2)(x-1/2 + sqrt(5)/2)#