What is the general solution for sin(x)+ cos(x)=-1?

2 Answers
Mar 8, 2018

x=npi-(-1)^n(pi/4)-pi/4x=nπ(1)n(π4)π4

Explanation:

As sinx+cosx=-1sinx+cosx=1, we have

sqrt2(sinx*1/sqrt2+cosx*1/sqrt2)=-12(sinx12+cosx12)=1

or sinxcos(pi/4)+cosxsin(pi/4)=-1/sqrt2sinxcos(π4)+cosxsin(π4)=12

or sin(x+pi/4)=sin(-pi/4)sin(x+π4)=sin(π4)

Now general solution of sinx=sinalphasinx=sinα is x=npi+-(-1)^nalphax=nπ±(1)nα

Hence, general solution is

x+pi/4=npi+(-1)^n(-pi/4)x+π4=nπ+(1)n(π4)

or x=npi+(-1)^n(-pi/4)-pi/4x=nπ+(1)n(π4)π4

or x=npi-(-1)^n(pi/4)-pi/4x=nπ(1)n(π4)π4

Mar 8, 2018

x=3/2 pi +2pin " or " pi + 2pinx=32π+2πn or π+2πn

Explanation:

sin(x)+cos(x)=-1sin(x)+cos(x)=1

=>sin(x)=-1-cos(x)sin(x)=1cos(x) equation-1

We have an identity

sin^2(x)+cos^2(x)=1sin2(x)+cos2(x)=1

Use this to find the value of sin(x)sin(x)

=> sin^2(x)=1-cos^2(x)sin2(x)=1cos2(x)

=> sin(x)=+-sqrt(1-cos^2(x))sin(x)=±1cos2(x)

We got two values for sin(x)sin(x)

+sqrt(1-cos^2(x)) "and" -sqrt(1-cos^2(x))+1cos2(x)and1cos2(x)

Put them one by one in equation-1.

=> +sqrt(1-cos^2(x))=-1-cos(x)+1cos2(x)=1cos(x)

Squaring both sides

=> 1-cos^2(x)=1+cos^2(x)+2cos(x)1cos2(x)=1+cos2(x)+2cos(x)

=> 0=2cos^2(x)+2cos(x)0=2cos2(x)+2cos(x)

Divide by two both sides

=> 0=cos^2(x)+cos(x)0=cos2(x)+cos(x)

=> 0=cos(x)(cos(x)+1)0=cos(x)(cos(x)+1)

It gives cos(x)=0cos(x)=0

We get sin(x)=-1sin(x)=1

The solution for this is

x = 3/2 pi + 2pinx=32π+2πn

Here , pi = 180^@π=180 and n is any integer.

Now , we also get cos(x)+1=0cos(x)+1=0

=> cos(x)=-1cos(x)=1

It gives sin(x)=0sin(x)=0 according to the given equation.

The solution for this is

x= pi + 2pinx=π+2πn

If you put sin(x)=-sqrt(1-cos^2(x))sin(x)=1cos2(x) you get the same results.

Hope it helps :)