What is the implicit derivative of #1=tanyx-y^2#?

1 Answer
Sep 28, 2017

#dy/dx=(ysec^2(yx))/(2y-xsec^2(yx))#

Explanation:

#"differentiate "color(blue)"implicitly with respect to x"#

#"differentiate "tan(yx)" using "color(blue)"chain/product rules"#

#0=sec^2(yx)xxd/dx(yx)-2ydy/dx#

#rArr2ydy/dx=sec^2(yx)(y+xdy/dx)#

#color(white)(rArr2ydy/dx)=ysec^2(yx)+xsec^2(yx)dy/dx#

#rArr2ydy/dx-xsec^2(yx)dy/dx=ysec^2(yx)#

#rArrdy/dx(2y-xsec^2(yx))=ysec^2(yx)#

#rArrdy/dx=(ysec^2(yx))/(2y-xsec^2(yx))#