What is the implicit derivative of #1=x/y-xtany#?

1 Answer
Dec 13, 2015

#dy/dx=-(y(ytany-1))/(x(1+y^2sec^2y))#

Explanation:

#d/dx[1=x/y-xtany]#

Find each derivative.

#d/dx[1]=0#

#d/dx[x/y]=(yd/dx[x]-xd/dx[y])/y^2=(y-xdy/dx)/y^2#

#d/dx[xtany]=tanyd/dx[x]+xd/dx[tany]=tany+xsec^2ydy/dx#

Plug the derivatives back in.

#0=(y-xdy/dx)/y^2-tany-xsec^2ydy/dx#

#tany=(y-xdy/dx)/y^2-xsec^2ydy/dx#

#y^2tany=y-xdy/dx-xy^2sec^2ydy/dx#

#y^2tany-y=dy/dx(-x-xy^2sec^2y)#

#dy/dx=-(y(ytany-1))/(x(1+y^2sec^2y))#