What is the implicit derivative of #1=xy-cosy#?
1 Answer
Explanation:
Implicit differentiation is basically an application of the chain rule.
#frac{"d"}{"d"x}(f(y)) = frac{"d"}{"d"y}(f(y)) frac{"d"y}{"d"x}#
#= f'(y) frac{"d"y}{"d"x}#
So in this problem, we take the derivative of
#frac{"d"}{"d"x}(1) = frac{"d"}{"d"x}(xy - cos(y))#
#0 = frac{"d"}{"d"x}(xy) - frac{"d"}{"d"x}(cos(y))#
#= [yfrac{"d"}{"d"x}(x)+xfrac{"d"}{"d"x}(y)] - frac{"d"}{"d"y}(cos(y))frac{"d"y}{"d"x}#
#= y + x frac{"d"y}{"d"x} - (-sin(y))frac{"d"y}{"d"x}#
Now, we just have to make
#-y = x frac{"d"y}{"d"x} + sin(y)frac{"d"y}{"d"x}#
#= (x + sin(y))frac{"d"y}{"d"x}#
#frac{"d"y}{"d"x} = -frac{y}{x + sin(y)}#