Quotient Rule for Derivatives:
#d(u/v)/dx = (v*(du)/(dx)-u*(dv)/(dx))/(v^2)#
With #u = y# and #v=(x-y)#
#color(white)("XXX")(du)/(dx) = (dy)/(dx)#
and
#color(white)("XXX")(dv)/(dx) = (d(x-y))/(dx) = 1-(dy)/(dx)#
Therefore
#color(white)("XXX")(d(y/(x-y)))/(dx) = ((x-y)(dy)/(dx) - y(1-(dy)/(dx)))/((x-y)^2)#
#color(white)("XXXXXXXX")=(x(dy)/(dx)-y)/((x-y)^2)#
#(d(5))/(dx)=0#
So, since #5= y/(x-y)#
#rArrcolor(white)("XXX")(d(5))/(dx) = (d(y/(x-y)))/(dx)#
#rArrcolor(white)("XXX")0 = (x(dy)/(dx)-y)/((x-y)^2)#
#rArrcolor(white)("XXX")x(dy)/(dx)-y=0#
#rArrcolor(white)("XXX")(dy)/(dx) = y/x#