What is the indefinite integral of 1/(xlnx)?
1 Answer
May 30, 2016
Explanation:
We have the integral:
int1/(xlnx)dx
Use substitution. Let
int1/(xlnx)dx=int(1/lnx)1/xdx=int1/udu
This is a common integral:
int1/udu=ln(absu)+C
Since
ln(absu)+C=ln(abslnx)+C