What is the indefinite integral of ln(1+x)?

1 Answer
Aug 20, 2016

(x+1)ln(1+x)-x+C

Explanation:

We have:

I=intln(1+x)dx

We will use integration by parts, which takes the form:

intudv=uv-intvdu

So, for intln(1+x)dx, let:

{(u=ln(1+x)" "=>" "du=1/(1+x)dx),(dv=dx" "=>" "v=x):}

Fitting this into the integration by parts formula:

I=xln(1+x)-intx/(1+x)dx

In integrating the second bit, you could long divide, but this is simpler:

I=xln(1+x)-int(1+x-1)/(1+x)dx

I=xln(1+x)-int((1+x)/(1+x)-1/(1+x))dx

I=xln(1+x)-int(1-1/(1+x))dx

I=xln(1+x)-intdx+int1/(1+x)dx

Both of these are fairly simple integrals:

I=xln(1+x)-x+ln(1+x)+C

Factoring ln(1+x):

I=(x+1)ln(1+x)-x+C