What is the indefinite integral of {ln(x)}^2?

1 Answer
Jul 3, 2016

= x ln^2 x -2 x ln x +2 x + C

Explanation:

int dx qquad ln^2(x)

we use IBP - int u v' = uv - int u'v

u = ln^2(x), u' = 2 ln x *1/x
v' = 1, v = x

implies x ln^2 x - int dx qquad 2 ln x

implies x ln^2 x -2 color{red}{ int dx qquad ln x} qquad circ

for the red bit again we IBP

here

u = ln x, u' = 1/x
v' = 1, v = x

implies int dx qquad ln x = x ln x - int dx qquad x*1/x
= x ln x - int dx

= x ln x - x + C qquad square

putting square into circ

implies x ln^2 x -2 (x ln x - x ) + C

= x ln^2 x -2 x ln x +2 x + C