What is the indefinite integral of ((lnx)^2)/x?

2 Answers
Jun 27, 2016

((ln x)^3)/3+C

Explanation:

Do a substitution: u=ln x, du = 1/x dx to get:

\int\ ((ln(x))^2)/x\ dx=\int\ u^{2}\ du=u^{3}/3+C=((ln x)^3)/3+C

Jun 27, 2016

=1/3 (ln x)^3 + C

Explanation:

int ((lnx)^2)/x \ dx

another integration where knowing the commonest calculus patterns comes in very useful

so we have the pattern that d/dx (f(x))^3 = 3 (f(x) )^2f'(x)

and d/dx ln (g(x)) = 1/(g(x)) g'(x)

combining these ideas, watch what happens if we do

d/dx (ln x)^3

= color{red}{3} (ln x)^2 * 1/x = color{red}{3} ((ln x)^2)/x

so we do color{red}{1/3} d/dx (ln x)^3 = d/dx (color{red}{1/3}(ln x)^3) = ((ln x)^2)/x

if follows that

int \ ((ln x)^2)/x \ dx =1/3 (ln x)^3 + C