What is the integral of -costsint+cos^2tsint+4sin^3tcostdt from o to pi?

π0cos(t)sin(t)+cos2(t)sin(t)+4sin3(t)cos(t)dt
I assume one can substitue with u=cos(t), but i fail to get the right answer of 2/3, i get -2/3.

1 Answer
Mar 17, 2018

23

Explanation:

I=π0costsint+cos2tsint+4sin3tcostdt
I=12π0sin2tdt+π0cos2tsintdt+π04sin3tcostdt

Let us take, I=I1+I2+I3
I1=12[cos2t2]π0=14[cos2πcos0]=14[11]=0
I2=π0cos2t(sint)dt=π0[cost]2ddt(cost)dt
I2=[(cost)33]π0=13[(cosπ)3(cos0)3]
I2=13[(1)3(1)3]=13[11]=13[2]
I2=23
I3=4π0[sint]3ddt(sint)dt=4[(sint)44]π0=[(sinπ)4(]sin0)4]=[00]=0
I=I1+I2+I3=0+23+0=23