What is the integral of int 1/(x^2+1)dx?

1 Answer

\int 1/{x^2+1}\ dx=\tan^{-1}(x)+C

Explanation:

Let x=\tan\theta\implies dx=\sec^2\theta\ d\theta & \theta=\tan^{-1}(x)

\therefore \int 1/{x^2+1}\ dx

=\int 1/{tan^2\theta+1}\ \sec^2\theta\ d\theta

=\int \frac{\sec^2\theta\ d\thea}{\sec^2\theta}

=\int d\theta

=\theta+C

=\tan^{-1}(x)+C