What is the integral of int 1/(x^(3/2) + x^(1/2)) dx?

1 Answer
Aug 19, 2016

2arctan(x^(1/2))+C

Explanation:

We have:

I=int1/(x^(3/2)+x^(1/2))dx

Factor the denominator.

I=int1/(x^(1/2)(x+1))dx

Which can be rewritten as:

I=intx^(-1/2)/(x+1)dx

I=intx^(-1/2)/((x^(1/2))^2+1)dx

Now, let u=x^(1/2). Thus, du=1/2x^(-1/2)dx.

I=2int(1/2x^(-1/2))/((x^(1/2))^2+1)dx

Substituting:

I=2int1/(u^2+1)du

This is the arctangent integral:

I=2arctan(u)+C

I=2arctan(x^(1/2))+C