Write (2x-5) as (2x+2-7)
Then the integral is
I=int((2x-5)dx)/(x^2+2x+2)=int((2x+2-7)dx)/(x^2+2x+2)
=int((2x+2)dx)/(x^2+2x+2)-int(7dx)/(x^2+2+2)
=I_1+I_2
Calculate the integral I_1 by substitution
Let u=x^2+2x+2, =>, du=(2x+2)dx
I_1=int((2x+2)dx)/(x^2+2x+2)=int(du)/u
=ln(u)
=ln(x^2+2x+2)
For the integral I_2, complete the square of the denominator
x^2+2x+2=x^2+2x+1+1=(x+1)^2+1
Let u=x+1, =>, du=dx
I_2=int(7dx)/(x^2+2+2)=7int(dx)/((x+1)^2+1)
=7int(du)/(u^2+1)
=7arctan(u)
=7arctan(x+1)
And finally,
I=ln(x^2+2x+2)-7arctan(x+1)+C