What is the integral of int (2x-5)/(x^2+2x+2)?

1 Answer
Jun 29, 2018

The answer is =ln(x^2+2x+2)-7arctan(x+1)+C

Explanation:

Write (2x-5) as (2x+2-7)

Then the integral is

I=int((2x-5)dx)/(x^2+2x+2)=int((2x+2-7)dx)/(x^2+2x+2)

=int((2x+2)dx)/(x^2+2x+2)-int(7dx)/(x^2+2+2)

=I_1+I_2

Calculate the integral I_1 by substitution

Let u=x^2+2x+2, =>, du=(2x+2)dx

I_1=int((2x+2)dx)/(x^2+2x+2)=int(du)/u

=ln(u)

=ln(x^2+2x+2)

For the integral I_2, complete the square of the denominator

x^2+2x+2=x^2+2x+1+1=(x+1)^2+1

Let u=x+1, =>, du=dx

I_2=int(7dx)/(x^2+2+2)=7int(dx)/((x+1)^2+1)

=7int(du)/(u^2+1)

=7arctan(u)

=7arctan(x+1)

And finally,

I=ln(x^2+2x+2)-7arctan(x+1)+C