What is the integral of int (e^x * cos 2x) dx?

1 Answer
Aug 16, 2017

int \ e^(x)cos2x \ dx = e^(x)/5(2sin2x+cos2x) + C

Explanation:

We could use a traditional double application of Integration By Parts. Here is a slightly different approach.

Let:

s = e^(x)sin2x \ \ \ \ and I_s = int e^(x)sin2x
c = e^(x)cos2x \ \ \ \ and I_c = int e^(x)cos2x

Differentiating wrt x we get:

(ds)/dx = e^(x)(d/dx sin2x) + (d/dx e^(x))sin2x
\ \ \ \ \ \ = 2e^(x)cos2x + e^(x)sin2x

(dc)/dx = e^(x)(d/dx cos2x) + (d/dx e^(x))cos2x
\ \ \ \ \ \ = -2e^(x)sin2x + e^(x)cos2x

Now integrate the above results:

int \ (ds)/dx \ dx = int \ 2e^(x)cos2x + e^(x)sin2x \ dx
=> s= 2I_c + I_s ... [A]

int \ (dc)/dx \ dx = int \ -2e^(x)sin2x + e^(x)cos2x \ dx
=> c = -2I_s + I_c ... [B]

2Eq [A] + Eq [B}:

2s+c=5I_c
:. I_c = 1/5(2s+c)

From [B] we also get:

c = -2I_s+1/5(2s+c)
:. c = -2I_s+2/5s+1/5c
:. I_s = 1/5(s-2c)

Hence we get the two results:

int \ e^(x)cos2x \ dx = 1/5(2s+c) + C
" " = e^(x)/5(2sin2x+cos2x) + C

int \ e^(x)sin2x \ dx = 1/5(s-2c) + C
" " = e^(x)/5(sin2x -2cos2x ) + C