What is the integral of int (e^x * cos 2x) dx?
1 Answer
int \ e^(x)cos2x \ dx = e^(x)/5(2sin2x+cos2x) + C
Explanation:
We could use a traditional double application of Integration By Parts. Here is a slightly different approach.
Let:
s = e^(x)sin2x \ \ \ \ andI_s = int e^(x)sin2x
c = e^(x)cos2x \ \ \ \ andI_c = int e^(x)cos2x
Differentiating wrt
(ds)/dx = e^(x)(d/dx sin2x) + (d/dx e^(x))sin2x
\ \ \ \ \ \ = 2e^(x)cos2x + e^(x)sin2x
(dc)/dx = e^(x)(d/dx cos2x) + (d/dx e^(x))cos2x
\ \ \ \ \ \ = -2e^(x)sin2x + e^(x)cos2x
Now integrate the above results:
int \ (ds)/dx \ dx = int \ 2e^(x)cos2x + e^(x)sin2x \ dx
=> s= 2I_c + I_s ... [A]
int \ (dc)/dx \ dx = int \ -2e^(x)sin2x + e^(x)cos2x \ dx
=> c = -2I_s + I_c ... [B]
2Eq [A] + Eq [B}:
2s+c=5I_c
:. I_c = 1/5(2s+c)
From [B] we also get:
c = -2I_s+1/5(2s+c)
:. c = -2I_s+2/5s+1/5c
:. I_s = 1/5(s-2c)
Hence we get the two results:
int \ e^(x)cos2x \ dx = 1/5(2s+c) + C
" " = e^(x)/5(2sin2x+cos2x) + C
int \ e^(x)sin2x \ dx = 1/5(s-2c) + C
" " = e^(x)/5(sin2x -2cos2x ) + C