What is the integral of int (sec x)^4dx(secx)4dx?

1 Answer
Mar 2, 2018

1/3 secx^2*tanx-1/2tanx13secx2tanx12tanx

Explanation:

using the reduction formula of secx^nsecxn
intsecx^ndxsecxndx=intsecx^(n-2)*secx^2dxsecxn2secx2dx
integrate intsecx^(n-2)*secx^2dxsecxn2secx2dx by parts (uv- intvduuvvdu)
where u=secx^(n-2)u=secxn2 and dv=secx^2dv=secx2
therefore intsecx^(n-2)*secx^2dxsecxn2secx2dx
=tanx*secx^(n-2)-(n-2)inttan^2*secx^(n-2) dxtanxsecxn2(n2)tan2secxn2dx
=tanx*secx^(n-2)-(n-2)int(secx^2-1)*secx^(n-2)dxtanxsecxn2(n2)(secx21)secxn2dx
=tanx*secx^(n-2)-(n-2)intsecx^n*secx^(n-2)dxtanxsecxn2(n2)secxnsecxn2dx
if I_"n"=intsecx^ndxIn=secxndx
therefore
I_"n"=tanx*secx^(n-2)-(n-2)intsecx^n-secx^(n-2)dxIn=tanxsecxn2(n2)secxnsecxn2dx
I_"n"=tanx*secx^(n-2)-(n-2)I_n+(n-2)I_"n-2"In=tanxsecxn2(n2)In+(n2)In-2
(n-1)I_"n"=tanx*secx^(n-2)+(n-2)I_"n-2"(n1)In=tanxsecxn2+(n2)In-2
I_"n"=1/(n-1)*(tanx*secx^(n-2))+(n-2)/(n-1)I_"n-2"In=1n1(tanxsecxn2)+n2n1In-2
Where I_"n"=intsecx^ndxIn=secxndx and I_"n-2"In-2=intsecx^(n-2)dxsecxn2dx
Substitute every n with 4 in I_"n"=1/(n-1)*(tanx*secx^(n-2))+(n-2)/(n-1)I_"n-2"In=1n1(tanxsecxn2)+n2n1In-2

Therefore
intsecx^4dx=1/3 secx^2*tanx-1/2intsecx^2dxsecx4dx=13secx2tanx12secx2dx
=1/3 secx^2*tanx-1/2tanx13secx2tanx12tanx
This method can be used to integrate sec x to the power of anything as long as the power is bigger than 1