What is the integral of int sin^2 (x).cos^2 (x) dx ?

1 Answer
Jun 19, 2016

intsin^2xcos^2xdx=x/8-(sin4x)/32+c

Explanation:

As sin2x=2sinxcosx

intsin^2xcos^2xdx=1/4int(4sin^2xcos^2x)dx

= 1/4intsin^2(2x)dx

= 1/4int(1-cos4x)/2dx

= x/8-1/8intcos4xdx

= x/8-1/8xx(sin4x)/4+c

= x/8-(sin4x)/32+c