What is the integral of #int sin(2x)dx#?

1 Answer
Mar 17, 2016

#-1/2cos(2x)+C#

Explanation:

We will use the rule:

#intsin(u)du=-cos(u)+C#

So, if we have

#intsin(2x)dx#

we should set

#u=2x" "=>" "du=2dx#

In order to have a #2dx# in the integral expression, multiply by a #2# on the inside and balance it with a #1/2# on the outside:

#=1/2intsin(2x)*2dx#

Substitute:

#=1/2intsin(u)du#

Using the initial rule, this becomes:

#=-1/2cos(u)+C#

Since #u=2x#,

#=-1/2cos(2x)+C#