What is the integral of int (x^2)*e^(x^2) dx (x2)ex2dx?

1 Answer
Sep 24, 2016

1/2xe^(x^2)-sqrt(pi)/4"erfi"(x)12xex2π4erfi(x)

Explanation:

d/dx(xe^(x^2))= 2x^2e^(x^2)+e^(x^2)ddx(xex2)=2x2ex2+ex2

then

int x^2 e^(x^2)dx = 1/2(xe^(x^2)-int e^(x^2)dx)x2ex2dx=12(xex2ex2dx)

but "erfi"(x) = 2/sqrt(pi)int_0^x e^(x^2)dxerfi(x)=2πx0ex2dx so

int x^2 e^(x^2)dx = 1/2xe^(x^2)-sqrt(pi)/4"erfi"(x)x2ex2dx=12xex2π4erfi(x)

NOTE:

"erfi"(x)erfi(x) or error function is defined as

"erfi"(x) = 2/sqrtpi int_0^x e^(-xi^2) d xierfi(x)=2πx0eξ2dξ