What is the integral of int x^3/(1+x^2)dx?

2 Answers
Mar 21, 2018

The answer is =1/2(1+x^2)-1/2ln(1+x^2)+C

Explanation:

Perform the substitution

u=1+x^2, =>, du=2xdx

=>, x^2=u-1

Therefore,

int(x^3dx)/(1+x^2)=int(x^2xdx)/(1+x^2)=1/2int((u-1)du)/(u)

=1/2int1du-1/2int(du)/u

=1/2u-1/2lnu

=1/2(1+x^2)-1/2ln(1+x^2)+C

Mar 21, 2018

int x^3/(x^2+1)*dx=x^2/2-1/2Ln(x^2+1)+C

Explanation:

int x^3/(x^2+1)*dx

=int (x^3+x-x)/(x^2+1)*dx

=int (x^3+x)/(x^2+1)*dx-int x/(x^2+1)*dx

=int x*dx-1/2int (2x)/(x^2+1)*dx

=x^2/2-1/2Ln(x^2+1)+C