What is the integral of int [ (xe^(2x)) / (2x + 1)^2 ]dx ?

1 Answer
Jun 22, 2017

Another method:

I=int(xe^(2x))/(2x+1)^2dx

We can try integration by parts with u=e^(2x) and dv=x/(2x+1)^2dx.

Note that v=intx/(2x+1)^2dx. Letting t=2x+1, this implies that x=1/2(t-1) and that dt=2dx=>dx=1/2dt, so v=int(1/2(t-1))/t^2 1/2dt=1/4int(1/t-1/t^2)dt=1/4lnabst+1/(4t)...

Also, du=2e^(2x)dx.

Then:

I=1/4e^(2x)(lnabs(2x+1)+1/(2x+1))-int2e^(2x)1/4(lnabs(2x+1)+1/(2x+1))dx

I=e^(2x)/4lnabs(2x+1)+e^(2x)/(4(2x+1))-1/2inte^(2x)lnabs(2x+1)dx-1/2inte^(2x)/(2x+1)dx

Trying IBP on the second integral, let:

u=-1/2e^(2x)=>du=-e^(2x)dx
dv=dx/(2x+1)=>v=1/2lnabs(2x+1)

So:

I=e^(2x)/4lnabs(2x+1)+e^(2x)/(4(2x+1))-1/2inte^(2x)lnabs(2x+1)dx-e^(2x)/4lnabs(2x+1)+1/2inte^(2x)lnabs(2x+1)dx

I=e^(2x)/(4(2x+1))+C