Another method:
I=int(xe^(2x))/(2x+1)^2dx
We can try integration by parts with u=e^(2x) and dv=x/(2x+1)^2dx.
Note that v=intx/(2x+1)^2dx. Letting t=2x+1, this implies that x=1/2(t-1) and that dt=2dx=>dx=1/2dt, so v=int(1/2(t-1))/t^2 1/2dt=1/4int(1/t-1/t^2)dt=1/4lnabst+1/(4t)...
Also, du=2e^(2x)dx.
Then:
I=1/4e^(2x)(lnabs(2x+1)+1/(2x+1))-int2e^(2x)1/4(lnabs(2x+1)+1/(2x+1))dx
I=e^(2x)/4lnabs(2x+1)+e^(2x)/(4(2x+1))-1/2inte^(2x)lnabs(2x+1)dx-1/2inte^(2x)/(2x+1)dx
Trying IBP on the second integral, let:
u=-1/2e^(2x)=>du=-e^(2x)dx
dv=dx/(2x+1)=>v=1/2lnabs(2x+1)
So:
I=e^(2x)/4lnabs(2x+1)+e^(2x)/(4(2x+1))-1/2inte^(2x)lnabs(2x+1)dx-e^(2x)/4lnabs(2x+1)+1/2inte^(2x)lnabs(2x+1)dx
I=e^(2x)/(4(2x+1))+C