What is the integral of (x^2 +2x-1)/(x^2+9)?

1 Answer
Mar 1, 2016

=x+ln(x^2+9)-10/3tan^-1(x/3)+C

Explanation:

First of all split the fraction up like so:

(x^2+2x-1)/(x^2+9) =x^2/(x^2+9)+(2x)/(x^2+9) -1/(x^2+9)

We can now integrate each fraction one by one, i.e:

int(x^2+2x-1)/(x^2+9)dx =intx^2/(x^2+9)+(2x)/(x^2+9) -1/(x^2+9)dx

We will have to do a bit of rearranging of the first fraction (add and subtract 9):

intx^2/(x^2+9)+(2x)/(x^2+9) -1/(x^2+9)dx=

=int(x^2+9-9)/(x^2+9)+(2x)/(x^2+9) -1/(x^2+9)dx

This can now be rearranged like so:

=int(x^2+9)/(x^2+9)+(2x)/(x^2+9) -1/(x^2+9)-9/(x^2+9)dx

=int1+(2x)/(x^2+9) -10/(x^2+9)dx

-The first term obviously just integrates to x.

-For the second term we should apply: int(f'(x))/f(x)=ln(f(x))+C

int (2x)/(x^2+9)dx=ln(x^2+9)+C

-And for the third term:

int10/(x^2+9)dx

Use the substitution x=3tan(u)
-> dx = 3 sec^2(u)du

We also need the trig identity: tan^2(x)+1=sec^2(x) Putting the substitution in:

10int(3sec^2(u))/(9tan^2(u)+9)du=10/3intsec^2(u)/sec^2(u)du

=10/3intdu=10/3u+C

Reverse the substitution and we get:

10/3tan^-1(x/3)+C

So returning to our original integral if apply what have found we get that:

int(x^2+2x-1)/(x^2+9)dx=int1+(2x)/(x^2+9) -10/(x^2+9)dx

=x+ln(x^2+9)-10/3tan^-1(x/3)+C