What is the radius of the incircle of a triangle whose sides are 5, 12 and 13 units?

1 Answer
Sep 29, 2017

#r=2# units

Explanation:

As #13^2=5^2+12^2#, the triangle is a right triangle.
Formula for the inradius (#r#) of a right triangle :
#r=(a*b)/(a+b+c)#, or #r= (a+b-c)/2#
where #a and b# are the legs of the right traingle and #c# is the hypotenuse.
#=> r=(a*b)/(a+b+c)=(5*12)/(5+12+13)=60/30=2# units

or # r=(a+b-c)/2=(5+12-13)/2=4/2=2# units

Proof 1 : #r=(a*b)/(a+b+c)#
enter image source here
Area #DeltaABC=1/2*(BC)*(AC)=1/2*r*(BC+AC+AB)#
#=> (r*(a+b+c))/2=(a*b)/2#
#=> r=(a*b)/(a+b+c)#

Proof 2 : #r=(a+b-c)/2#
enter image source here
Recall that the tangents to a cicle from an external point are equal,
#=> CD=CF=r, BE=BF=a-r#,
and #AD=AE=b-r#
#=> c=a-r+b-r#
#=> c=a+b-2r#
#=> 2r=a+b-c#
#=> r=(a+b-c)/2#