What is the rationalising factor of the given number?
#2+sqrt(7+2sqrt(10)#
2 Answers
Explanation:
I will assume that you are looking for a radical conjugate, that is an expression which when multiplied by the given expression gives a rational product.
Given:
#2+sqrt(7+2sqrt(10))#
First we should check whether the expression
Note that in https://socratic.org/s/aTtiPKas I found that given:
#sqrt(p+qsqrt(r))" "# with#p, q, r > 0#
then if
#sqrt(p+qsqrt(r)) = sqrt(2p+2s)/2+sqrt(2p-2s)/2#
In our example, putting
#s = sqrt(p^2-q^2r) = sqrt(7^2-2^2(10)) = sqrt(49-40) = sqrt(9) = 3#
So:
#sqrt(7+2sqrt(10)) = sqrt(2(7)+2(3))/2+sqrt(2(7)-2(3))/2#
#color(white)(sqrt(7+2sqrt(10))) = sqrt(20)/2+sqrt(8)/2#
#color(white)(sqrt(7+2sqrt(10))) = sqrt(5)+sqrt(2)#
So:
#2+sqrt(7+2sqrt(10)) = 2+sqrt(5)+sqrt(2)#
Since this involves two square roots, a suitable radical conjugate is formed by multiplying the variants of the expression
#(2+sqrt(5)-sqrt(2))(2-sqrt(5)-sqrt(2))(2-sqrt(5)+sqrt(2))#
#=(2+sqrt(5)-sqrt(2))((2-sqrt(5))^2-(sqrt(2))^2)#
#=(2+sqrt(5)-sqrt(2))((4-4sqrt(5)+5)-2)#
#=(2+sqrt(5)-sqrt(2))(7-4sqrt(5))#
#=7(2+sqrt(5)-sqrt(2))-4sqrt(5)(2+sqrt(5)-sqrt(2))#
#=(14+7sqrt(5)-7sqrt(2))-(8sqrt(5)+20-4sqrt(10))#
#=-6-sqrt(5)-7sqrt(2)+4sqrt(10)#
Note that this is negative, so, let's negate it to get the slightly more attractive radical conjugate:
#6+sqrt(5)+7sqrt(2)-4sqrt(10)#
As a check, let's multiply this by
#(2+sqrt(5)+sqrt(2))(6+sqrt(5)+7sqrt(2)-4sqrt(10))#
#=2(6+sqrt(5)+7sqrt(2)-4sqrt(10))+sqrt(5)(6+sqrt(5)+7sqrt(2)-4sqrt(10))+sqrt(2)(6+sqrt(5)+7sqrt(2)-4sqrt(10))#
#=(12+2sqrt(5)+14sqrt(2)-8sqrt(10))+(6sqrt(5)+5+7sqrt(10)-20sqrt(2))+(6sqrt(2)+sqrt(10)+14-8sqrt(5))#
#=31#
Here's another way to simplify...
Explanation:
One way of simplifying
The other zeros will be the variants:
#-sqrt(7+2sqrt(10))# ,#" "sqrt(7-2sqrt(10))# ,#" "# and#" "-sqrt(7-2sqrt(10))#
The quartic of which these are zeros can be expressed as:
#(x^2-7)^2-40#
#= x^4-14x^2+9#
#= x^4-6x^2+9-8x^2#
#= (x^2-3)^2-(2sqrt(2)x)^2#
#= (x^2-2sqrt(2)x-3)(x^2+2sqrt(2)x-3)#
#= (x^2-2sqrt(2)x+2-5)(x^2+2sqrt(2)x+2-5)#
#= ((x-sqrt(2))^2-(sqrt(5))^2)((x+sqrt(2))^2-(sqrt(5))^2)#
#= (x-sqrt(2)-sqrt(5))(x-sqrt(2)+sqrt(5))(x+sqrt(2)-sqrt(5))(x+sqrt(2)+sqrt(5))#
Hence zeros:
The greatest of these is
So:
#sqrt(7+2sqrt(10)) = sqrt(2)+sqrt(5)#
From this point we can proceed as my other answer to multiply:
#(2+sqrt(5)-sqrt(2))(2-sqrt(5)-sqrt(2))(2-sqrt(5)+sqrt(2))#