What is the #rootii#?

2 Answers
Oct 14, 2017

Using a similar question:
#root(n)(i)=cos(\pi/(2n))+isin(\pi/(2n))#

#root(i)(i)=cos(\pi/(2i))+isin(\pi/(2i))#

Using Euler's identity:
#e^(ix)=cosx+isinx#

We know that:
#e^(i*\pi/(2i))=cos(\pi/(2i))+isin(\pi/(2i))#

#cos(\pi/(2i))+isin(\pi/(2i))=e^(\pi/2)#

Therefore, #root(i)(i)=e^(\pi/2)#

This can be proved by calculating #(e^(\pi/2))^i# which should give #i#

Oct 14, 2017

#e^(pi/2+2npi)" "# for #n in ZZ#, with principal value #e^(pi/2)#

Explanation:

Note that:

#i = e^((pi/2+2npi)i)" "# for any #n in ZZ#

So:

#root(i)(i) = i^(1/i) = i^(-i) = (e^((pi/2+2npi)i))^(-i) = e^((pi/2+2npi)*(-i^2))= e^(pi/2+2npi)#

with principal value #e^(pi/2)# when #n=0#