What is the second derivative of inverse tangent?

1 Answer
Mar 3, 2018

d2dx2arctanx=2x(1+x2)2

Explanation:

Let:

y=arctanx

so that:

x=tany

differentiate this last equality with respect to x:

1=sec2ydydx

Now using the trigonometric inequality:

sec2y=1+tan2y

we have:

1=(1+tan2y)dydx

1=(1+x2)dydx

that is:

dydx=11+x2

Differentiate again using the chain rule:

d2ydx2=ddx11+x2

d2ydx2=1(1+x2)2ddx(1+x2)

d2ydx2=2x(1+x2)2