What is the slope of f(x)=-e^x/x^2 at x=1?

1 Answer
Sep 24, 2016

The Reqd. Slope=e.

Explanation:

We know that slope of a curve C : y=f(x)=-e^x/x^2=-x^-2e^x

at x=1" is nothing but "f'(1).

f(x)=-x^-2e^xrArr f'(x)=-{(x^-2)(e^x)'+(e^x)(x^-2)'}

=-{(x^-2)e^x+e^x(-2x^-3)}

=-e^x(x^-2-2x^-3)

rArr f'(1)=-e^1(1^-2-2*1^-3)

=-e(1-2)=e.

Hence, the Reqd. Slope=e.