What is the slope of f(x)=-xe^(x-3x^3) at x=-1?

1 Answer
Jun 28, 2016

The reqd. slope =[dy/dx]_(x=-1)=f'(-1)=-9e^2.

Explanation:

Slope of a curve : y=f(x) at a particular pt. is, by defn., the value of dy/dx at that pt.

Here, y=f(x)= -x*e^(x-3x^3).

:. dy/dx=f'(x)=-{x*d/dx(e^(x-3x^3))+e^(x-3x^3)*d/dx(x)}=-{x*e^(x-3x^3)*d/dx((x-3x^3))+e^(x-3x^3)*1}=-{x*e^(x-3x^3)*(1-9x^2)+e^(x-3x^3)}=-e^(x-3x^3){x-9x^3+1}.

Therefore, the reqd. slope =[dy/dx]_(x=-1)=f'(-1)=-e^(-1+3)(-1+9+1)=-9e^2