What is the slope of the tangent line of sinx-y^2/x= C , where C is an arbitrary constant, at (pi/3,1)?

1 Answer
Mar 29, 2016

Slope of the tangent at (pi/3,1) is 3/(2pi)+(pi)/12

Explanation:

At (pi/3,1) we have sin(pi/3)-1^2/(pi/3)=C or C=sqrt3/2-(1xx3)/pi=(pisqrt3-3)/(2pi)

Slope of the function is given by its first derivative and differentiating the function sinx-y^2/x=(pisqrt3-3)/(2pi), we get

cosx-(x*2y*(dy/(dx))-y^2*1)/x^2=0 or

cosx-2y/x*(dy)/(dx)+y^2/x^2=0 or

2y/x*(dy)/(dx)=y^2/x^2+cosx or

(dy)/(dx)=y^2/x^2*x/(2y)+x/(2y)cosx or

(dy)/(dx)=y/(2x)+x/(2y)cosx

and at (pi/3,1), (dy)/(dx)=1/(2(pi)/3)+((pi)/3)/(2*1)cos(pi/3)

or (dy)/(dx)=3/(2pi)+(pi)/6*1/2=3/(2pi)+(pi)/12

Hence slope at (pi/3,1) is 3/(2pi)+(pi)/12