What is the slope of the tangent line of xy^2-(1-xy)^2= C xy2(1xy)2=C, where C is an arbitrary constant, at (1,-1)(1,1)?

1 Answer
Apr 23, 2018

dy/dx=-1.5dydx=1.5

Explanation:

We first find d/dxddx of each term.

d/dx[xy^2]-d/dx[(1-xy)^2]=d/dx[C]ddx[xy2]ddx[(1xy)2]=ddx[C]

d/dx[x]y^2+d/dx[y^2]x-2(1-xy)d/dx[1-xy]=0ddx[x]y2+ddx[y2]x2(1xy)ddx[1xy]=0

y^2+d/dx[y^2]x-2(1-xy)(d/dx[1]-d/dx[xy])=0y2+ddx[y2]x2(1xy)(ddx[1]ddx[xy])=0

y^2+d/dx[y^2]x-2(1-xy)(-d/dx[x]y+d/dx[y]x)=0y2+ddx[y2]x2(1xy)(ddx[x]y+ddx[y]x)=0

y^2+d/dx[y^2]x-2(1-xy)(-y+d/dx[y]x)=0y2+ddx[y2]x2(1xy)(y+ddx[y]x)=0

The chain rule tells us:
d/dx=d/dy*dy/dxddx=ddydydx

y^2+dy/dx d/dy[y^2]x-2(1-xy)(-y+dy/dxd/dy[y]x)=0y2+dydxddy[y2]x2(1xy)(y+dydxddy[y]x)=0

y^2+dy/dx 2yx-2(1-xy)(-y+dy/dx x)=0y2+dydx2yx2(1xy)(y+dydxx)=0

dy/dx 2yx-2(1-x)dy/dx x=-y^2-2y(1-xy)dydx2yx2(1x)dydxx=y22y(1xy)

dy/dx( 2yx-2x(1-x))=-y^2-2y(1-xy)dydx(2yx2x(1x))=y22y(1xy)x

dy/dx=-(y^2+2y(1-xy))/(2yx-2x(1-x))dydx=y2+2y(1xy)2yx2x(1x)

For (1,-1)(1,1)

dy/dx=-((-1)^2+2(-1)(1-1(-1)))/(2(1)(-1)-2(1)(1-1))=-1.5dydx=(1)2+2(1)(11(1))2(1)(1)2(1)(11)=1.5