What is the standard form of 3x(3-x)(2+y) 3x(3x)(2+y)?

1 Answer
Jan 27, 2018

See a solution process below:

Explanation:

First, multiply the two terms in parenthesis. To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

3x(color(red)(3) - color(red)(x))(color(blue)(2) + color(blue)(y))3x(3x)(2+y) becomes:

3x((color(red)(3) xx color(blue)(2)) + (color(red)(3) xx color(blue)(y)) - (color(red)(x) xx color(blue)(2)) - (color(red)(x) xx color(blue)(y)))3x((3×2)+(3×y)(x×2)(x×y))

3x((6 + 3y - 2x - xy)3x((6+3y2xxy)

Next, we can multiply each term within the parenthesis by the term outside the parenthesis:

color(red)(3x)((6 + 3y - 2x - xy)3x((6+3y2xxy)

(color(red)(3x xx 6) + (color(red)(3x xx 3y) - (color(red)(3x xx 2x) - (color(red)(3x xx xy)(3x×6+(3x×3y(3x×2x(3x×xy

18x + 9xy - 6x^2 - 3x^2y)18x+9xy6x23x2y)

We can now put the terms in standard order:

-6x^2 - 3x^2y + 18x + 9xy)6x23x2y+18x+9xy)