The equation of a quadratic in standard form is: #y=ax^2+bx+c#
So, this question is asking us to find #a, b , c#
#y=(2x+14)(x+12) - (7x-7)^2#
It is probably simplier to break #y# in its two parts first.
#y = y_1 - y_2#
Where: #y_1 = (2x+14)(x+12)# and #y_2= (7x-7)^2#
Now, expand #y_1#
#y_1 = 2x^2+24x+14x+168#
#= 2x^2+38x+168#
Now, expand #y_2#
#y_2 = (7x-7)^2 = 7^2(x-1)^2#
#=49(x^2-2x+1)#
#= 49x^2-98x+49#
We can now simply combine #y_1 - y_2# to form #y#
Thus, #y= 2x^2+38x+168 -(49x^2-98x+49)#
#= 2x^2+38x+168 -49x^2+98x-49#
Combine coefficients of like terms.
#y = (2-49)x^2 + (38+98)x +(168-49)#
#y= -47x^2 + 136x +119# (Is our quadratic in standard form)
#a=-47, b=+136, c=+119#