What is the standard form of y= (-2x+5)^3-(2x+2)^2?

1 Answer
Nov 16, 2017

This is a form of:
y=ax^3+bx^2+cx+d

Explanation:

y=(-2x+5)^3-(2x+2)^2
=> y=(-2x+5)*(-2x+5)*(-2x+5)-(2x+2)*(2x+2)
=> y=(4x^2-20x+25)*(-2x+5)-(4x^2+8x+4)

(4x^2-20x+25)*(-2x+5)=-8x^3+20x^2+40x^2-100x-50x+125
= -8x^3+60x^2-150x+125

--

-(4x^2+8x+4)=-4x^2-8x-4

--

y=(-2x+5)^3-(2x+2)^2=...= -8x^3+60x^2-150x+125-4x^2-8x-4
=> y=-8x^3+56x^2-158x+121

This is a form of:
y=ax^3+bx^2+cx+d
for
a=-8 , b=56 , c=-158 , d=121