What is the standard form of y= (2x-5)^3+(2x+3)^2y=(2x5)3+(2x+3)2?

1 Answer
Apr 20, 2018

y=8x^3-56x^2+162x-116y=8x356x2+162x116

Explanation:

First, let's factor:
y=(2x-5)^3+(2x+3)^2y=(2x5)3+(2x+3)2
y=(2x-5)(2x-5)(2x-5)+(2x+3)(2x+3)y=(2x5)(2x5)(2x5)+(2x+3)(2x+3)
Now, lets simplify:
y=(4x^2-20x+25)(2x-5)+(4x^2+12x+9)y=(4x220x+25)(2x5)+(4x2+12x+9)
y=(8x^3-40x^2+50x-20x^2+100x-125)+(4x^2+12x+9)y=(8x340x2+50x20x2+100x125)+(4x2+12x+9)
y=(8x^3-60x^2+150x-125)+(4x^2+12x+9)y=(8x360x2+150x125)+(4x2+12x+9)
Finally, Lets add up like terms:
y=8x^3-56x^2+162x-116y=8x356x2+162x116