What is the standard form of y= (2x-9)(x-5)-(2x+7)^2y=(2x9)(x5)(2x+7)2?

1 Answer
Dec 10, 2015

y=-2x^2-47x-4y=2x247x4

Explanation:

The general standard form for a quadratic is
color(white)("XXX")y=ax^2+bx+cXXXy=ax2+bx+c
with constants a, b, ca,b,c

Given
color(white)("XXX")y=color(red)((2x-9)(x-5))-color(blue)((2x+7)^2)XXXy=(2x9)(x5)(2x+7)2

Expanding the terms:
color(white)("XXX")y=color(red)((2x^2-19x+45))-color(blue)((4x^2+28x+49))XXXy=(2x219x+45)(4x2+28x+49)

Combine like terms:
color(white)("XXX")y=-2x^2-47x-4XXXy=2x247x4