What is the standard form of #y-4x= -(x-1)^2(x-1)^3#?
1 Answer
May 15, 2016
Explanation:
Notice that
The binomial theorem tells us that:
#(a+b)^n = sum_(k=0)^n ((n),(k)) a^(n-k)b^k#
where the binomial coefficient:
The binomial coefficients can be found as rows in Pascal's triangle:
The row
#(a+b)^5 = a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5#
Then put
#(x-1)^5 = x^5-5x^4+10x^3-10x^2+5x-1#
So:
#y - 4x#
#= -(x-1)^2(x-1)^3#
#= -(x-1)^5#
#= -(x^5-5x^4+10x^3-10x^2+5x-1)#
#= -x^5+5x^4-10x^3+10x^2-5x+1#
Add
#y = -x^5+5x^4-10x^3+10x^2-x+1#
This has the powers of