What is the standard form of # y= (9x-2)(x+2)(7x-4)#?

1 Answer
Jun 10, 2018

#y=63x^3-148x^2+50x+8#

Explanation:

The standard form refers to the format of an expression where the terms are arranged in a descending order. The degree is determined by the exponent value of the variable of each term.

To find the standard form, multiply the brackets out and simplify.

#y=(9x-2)(x+2)(7x-4)#

Lets multiply out #y=(9x-2)(x+2)# first:

#y=(9x-2)(x+2)#
#y=9x^2+18x-2x-2#
#y=9x^2-16x-2#

Then multiply #y=(9x^2-16x-2)(7x-4)#:

#y=(9x^2-16x-2)(7x-4)#
#y=63x^3-36x^2-112x^2+64x-14x+8#
#y=63x^3-148x^2+50x+8#

This is the standard form.