What is the standard form of y= (-x+1)^3-(-3x+1)^2y=(x+1)3(3x+1)2?

1 Answer
Mar 29, 2018

y=-28x^3+30x^2-12x+2y=28x3+30x212x+2

Explanation:

y=(-x+1)^3-(-3x+1)^2y=(x+1)3(3x+1)2

y=(1-x)^3+(1-3x)^2y=(1x)3+(13x)2

y=1^3-3xx1^2 xxx+3xx1xxx^2-x^3+1^3-3xx1^2xx3x+3xx1xx(3x)^2-(3x)^3y=133×12×x+3×1×x2x3+133×12×3x+3×1×(3x)2(3x)3

y=1-3x+3x^2-x^3+1-9x+27x^2-27x^3y=13x+3x2x3+19x+27x227x3

y=-x^3-27x^3+3x^2+27x^2-9x-3x+1+1y=x327x3+3x2+27x29x3x+1+1

y=-28x^3+30x^2-12x+2y=28x3+30x212x+2