What is the standard form of y= (x+2)^2+ x(x-3)^2 y=(x+2)2+x(x−3)2?
1 Answer
Jan 28, 2016
Explanation:
Expand each polynomial through distribution.
y=(x^2+2x+2x+4)+x(x^2-3x-3x+9)y=(x2+2x+2x+4)+x(x2−3x−3x+9)
y=(x^2+4x+4)+x(x^2-6x+9)y=(x2+4x+4)+x(x2−6x+9)
y=x^2+4x+4+x^3-6x^2+9xy=x2+4x+4+x3−6x2+9x
y=x^3+(x^2-6x^2)+(4x+9x)+4y=x3+(x2−6x2)+(4x+9x)+4
y=x^3-5x^2+13x+4y=x3−5x2+13x+4
This is in standard form since the terms' exponents are listed in descending order.