What is the standard form of y= (x^2-4)(2x-4) -(2x+5)^2?

2 Answers
Dec 27, 2017

y=2x^3-8x^2-28x-9

Explanation:

y=(x^2-4)(2x-4)-(2x+5)^2

y=((x^2)(2x)+(-4)(2x)+(x^2)(-4)+(-4)(-4))-((2x)^2+2(2x)(5)+(5)^2)

y=2x^3-8x-4x^2+16-4x^2-20x-25

y=2x^3-8x^2-28x-9

A helpful website

Dec 27, 2017

y=2x^3-8x^2-28x-9

Explanation:

We have to expand a bunch:

(x^2-4)(2x-4)=2x^3-4x^2-8x+16
(2x+5)^2=4x^2+20x+25

Start with:
(x^2-4)(2x-4) - (2x+5)^2

Replace with expansions:
= 2x^3-4x^2-8x+16 - (4x^2+20x+25)

Distribute the negative:
=2x^3-4x^2-8x+16 - 4x^2-20x-25

Collect like terms:
=2x^3-8x^2-28x-9

So our final answer is y=2x^3-8x^2-28x-9