What is the standard form of y= (x+2) (4x+1) y=(x+2)(4x+1)?

2 Answers
Dec 5, 2015

y=4x^2+9x+2y=4x2+9x+2

Explanation:

The "standard form" for a quadratic equation is
color(white)("XXX")y=ax^2+bx+cXXXy=ax2+bx+c
with constants a, b, ca,b,c

Given y=(x+2)(4x+1)y=(x+2)(4x+1)
we can convert this into standard form by simply multiplying the two factors on the right side:
color(white)("XXX")(x+2)(4x+1)=4x^2+9x+2XXX(x+2)(4x+1)=4x2+9x+2

Dec 5, 2015

y=4x^2+9x+2y=4x2+9x+2

Explanation:

y=(x+2)(4x+1)y=(x+2)(4x+1)

Foil the two binomials.

![http://hubpages.com/education/Using-the-FOIL-Method-to-Expand-Products](useruploads.socratic.org)

a=x, b=2, c=4x, d=1a=x,b=2,c=4x,d=1

y=(x*4x)+(x*1)+(2*4x)+(2*1)y=(x4x)+(x1)+(24x)+(21)

Simplify.

y=4x^2+x+8x+2y=4x2+x+8x+2

Combine like terms.

y=4x^2+9x+2y=4x2+9x+2