What is the standard form of y= (x+5)(x-2)^2 y=(x+5)(x2)2?

1 Answer
Jul 12, 2017

See a solution process below:

Explanation:

First, expand the term being squared on the right hand of the equation using this rule:

(a - b)^2 = a^2 - 2ab + b^2(ab)2=a22ab+b2

Substituting xx for aa and 22 for bb gives:

y = (x + 5)(x - 2)^2y=(x+5)(x2)2

y = (x + 5)(x^2 - (2 * x * 2) + 2^2)y=(x+5)(x2(2x2)+22)

y = (x + 5)(x^2 - 4x + 4)y=(x+5)(x24x+4)

Next, we can multiply the two remaining terms by multiplying each term in the parenthesis on the left by each term in the parenthesis on the left:

y = (color(red)(x) + color(red)(5))(color(blue)(x^2) - color(blue)(4x) + color(blue)(4))y=(x+5)(x24x+4)

Becomes:

(color(red)(x) xx color(blue)(x^2)) - (color(red)(x) xx color(blue)(4x)) + (color(red)(x) xx color(blue)(4)) + (color(red)(5) xx color(blue)(x^2)) - (color(red)(5) xx color(blue)(4x)) + (color(red)(5) xx color(blue)(4))(x×x2)(x×4x)+(x×4)+(5×x2)(5×4x)+(5×4)

y = x^3 - 4x^2 + 4x + 5x^2 - 20x + 20y=x34x2+4x+5x220x+20

We can now group and combine like terms in descending order by the power of the exponent for the xx variables::

y = x^3 - 4x^2 + 5x^2 + 4x - 20x + 20y=x34x2+5x2+4x20x+20

y = x^3 + 1x^2 + (-16)x + 20y=x3+1x2+(16)x+20

y = x^3 + x^2 - 16x + 20y=x3+x216x+20