What is the standard form of y= (x+x^2)(6x-3) -(2x+2)^3y=(x+x2)(6x3)(2x+2)3?

1 Answer
Jan 31, 2016

See explanation...

Explanation:

y=(x+x^2)(6x-3)-(2x+2)^3y=(x+x2)(6x3)(2x+2)3

Multiply x+x^2x+x2 and 6x-36x3 using Foil method

So,
(x+x^2)(6x-3)=6x^2-3x+6x^3-3x^2=3x^2-3x+6x^3(x+x2)(6x3)=6x23x+6x33x2=3x23x+6x3

To,simplify (2x+2)^3(2x+2)3 Use the formula(Binomial expansion) a^3+3a^2b+3ab^2+b^3a3+3a2b+3ab2+b3

(2x+2)^3=8x^3+24x^2+24x+8(2x+2)3=8x3+24x2+24x+8

Watch this video to now about the binomial expansion:

So,

y=(3x^2-3x+6x^3)-(8x^3+24x^2+24x+8)y=(3x23x+6x3)(8x3+24x2+24x+8)

Change the signs,

rarry=3x^2-3x+6x^3-8x^3-24x^2-24x-8y=3x23x+6x38x324x224x8

rarry=-21x^2-3x+6x^3-8x^3-24x-8y=21x23x+6x38x324x8

rarry=-21x^2-27x+6x^3-8x^3-8y=21x227x+6x38x38

rarry=-21x^2-27x-2x^3-8y=21x227x2x38

In Standard form:

rarry=-2x^3-21x^2-27x-8y=2x321x227x8