What is the surface area of the solid created by revolving #f(x) =e^(2-x) , x in [1,2]# around the x axis?
1 Answer
I got
The surface area for a revolution around the
#S = 2 pi int_(a)^(b) f(x)sqrt(1 + ((dy)/(dx))^2)dx# (which is basically a projection of the circumference along the function
#f(x)# whose arc length you could have found.)
In this case,
#((dy)/(dx))^2 = (-e^(2-x))^2#
And so we have:
#S = 2 pi int_1^2 e^(2-x) sqrt(1 + (-e^(2-x))^2)dx#
First, let
#S = 2 pi int sqrt(1 + u^2)du#
where we omit the integral bounds for now. Then we can see it looks like the form
#S = 2 pi int sqrt(1 + tan^2theta)sec^2thetad theta#
#= 2 pi int sec^3thetad theta#
And you should have written down this integral in class to be:
#= 2 pi overbrace([1/2(secthetatantheta + ln|sectheta + tantheta|)])^(int sec^3 theta d theta)#
#= pi secthetatantheta + pi ln|sectheta + tantheta|# (if you didn't, then you may have unknowingly asked a difficult question!)
Now, back-substitute.
#=> pi usqrt(1 + u^2) + pi ln|sqrt(1 + u^2) + u|#
#= pi usqrt(1 + (-e^(2-x))^2) + pi ln|sqrt(1 + (-e^(2-x))^2) + (-e^(2-x))|#
#= -pi e^(2 - x)sqrt(1 + e^(4-2x)) + pi ln|sqrt(1 + e^(4-2x)) - e^(2-x)|#
As it turns out,
#= -pi e^(2 - x)sqrt(1 + e^(4-2x)) + pi ln(sqrt(1 + e^(4-2x)) - e^(2-x))#
Now, we evaluate from
#=> [-pi e^(2 - 2)sqrt(1 + e^(4-2*2)) + pi ln(sqrt(1 + e^(4-2*2)) - e^(2-2))] - [-pi e^(2 - 1)sqrt(1 + e^(4-2*1)) + pi ln(sqrt(1 + e^(4-2*1)) - e^(2-1))]#
#= [-pi sqrt(2) + pi ln(sqrt(2) - 1)] - [-pi esqrt(1 + e^2) + pi ln(sqrt(1 + e^2) - e)]#
#= -pi sqrt(2) + pi ln(sqrt(2) - 1) + pi esqrt(1 + e^2) - pi ln(sqrt(1 + e^2) - e)#
#~~# #color(blue)(22.943)#