What is the surface area produced by rotating #f(x)=sinx-cosx, x in [0,pi/4]# around the x-axis?

1 Answer
Jun 2, 2018

#S_A=2piint_0^(pi/4)(sinx-cosx)*sqrt(2+sin2x)*dx=-3.7516#

Explanation:

The surface area due to #"x-axis"# given by:

#color(red)[S_A=2piint_a^by*sqrt(1+(y')^2)*dx#

#y=sinx-cosx#

#y'=cosx+sinx#

#(y')^2=cos^2x+2sinx*cosx+sin^2x#

the interval of the integral #x in [0,pi/4]#

now let setup the interval of the definite integral to determine the surface area:

#S_A=2piint_0^(pi/4)(sinx-cosx)*sqrt(1+(cosx+sinx)^2)*dx#

#S_A=2piint_0^(pi/4)(sinx-cosx)*sqrt(1+cos^2x+2sinx*cosx+sin^2x)*dx#

#S_A=2piint_0^(pi/4)(sinx-cosx)*sqrt(1+1+sin2x)*dx#

#S_A=2piint_0^(pi/4)(sinx-cosx)*sqrt(2+sin2x)*dx#

#=2pi[(root(4)17*sin(arctan(1/4)/2))/2^(7/2)+(root(4)17*cos(arctan(1/4)/2))/2^(7/2)-sqrt(5)/8-sqrt(3)/sqrt(2)+1/sqrt(2)]#

#=2pi[(8root(4)17*sin(arctan(1/4)/2)+8root(4)17*cos(arctan(1/4)/2)-2^(7/2)*sqrt(5)-64sqrt(3)+64)/2^(13/2)]#

#=-3.7516#

show below the surface area revolving (shaded):

enter image source here