Follow this 3 easy steps, it's not that hard as it seems..
x^3 - 3b^(2/3) x + 9a
Where x = (2a + sqrt(4a^2 - b^2))^(1/3) + (2a - sqrt(4a^2 - b^2))^(1/3)
Step 1 -> Substitute the value of x into the main equation..
color(red)x^3 - 3b^(2/3) color(red)(x) + 9a
color(red) [[(2a + sqrt(4a^2 - b^2))^(1/3) + (2a - sqrt(4a^2 - b^2))^(1/3)]]^3 - 3b^(2/3) color(red)[[(2a + sqrt(4a^2 - b^2))^(1/3) + (2a - sqrt(4a^2 - b^2))^(1/3)] + 9a
Step 2 -> Eliminating the powers..
[(2a + sqrt(4a^2 - b^2)) + (2a - sqrt(4a^2 - b^2))]^(1/3 xx cancel3) - 3b^(2/3) [(2a + sqrt(4a^2 - b^2)) + (2a - sqrt(4a^2 - b^2))]^(1/3) + 9a
[(2a + sqrt(4a^2 - b^2)) + (2a - sqrt(4a^2 - b^2))] - 3b^(2/3) [(2a + sqrt(4a^2 - b^2)) + (2a - sqrt(4a^2 - b^2))]^(1/3) + 9a
[(2a + sqrt(4a^2 - b^2)) + (2a - sqrt(4a^2 - b^2))] - 3b[(2a + sqrt(4a^2 - b^2)) + (2a - sqrt(4a^2 - b^2))]^((1/3) xx (2/3)) + 9a
[(2a + sqrt(4a^2 - b^2)) + (2a - sqrt(4a^2 - b^2))] - 3b[(2a + sqrt(4a^2 - b^2)) + (2a - sqrt(4a^2 - b^2))]^(2/9) + 9a
Step 3 -> Collecting like terms..
(2a + 2a) + (sqrt(4a^2 - b^2) - sqrt(4a^2 - b^2)) - 3b[(2a + 2a) + (sqrt(4a^2 - b^2) - sqrt(4a^2 - b^2))]^(2/9) + 9a
4a + cancel(sqrt(4a^2 - b^2) - sqrt(4a^2 - b^2)) - 3b[4a + cancel(sqrt(4a^2 - b^2) - sqrt(4a^2 - b^2))]^(2/9) + 9a
rArr 4a + 0 - 3b[4a + 0]^(2/9) + 9a
rArr 4a - 3b[4a]^(2/9) + 9a
rArr 4a + 9a - (3b xx 4a)^(2/9)
rArr 13a - 12ab^(2/9) -> Answer
Hence Option 4 is the suitable Answer..