What is the value of? lim_(x->0)(int_0^x sin t^2.dt)/sin x^2
1 Answer
lim_(x rarr 0) (int_0^x sin t^2 dt)/(sin x^2) = 0
Explanation:
We seek:
L = lim_(x rarr 0) (int_0^x sin t^2 dt)/(sin x^2)
Both the numerator and the2 denominator
L = lim_(x rarr 0) (d/dx int_0^x sin (t^2) dt)/(d/dx sin (x^2) )
\ \ = lim_(x rarr 0) (d/dx int_0^x sin (t^2) dt)/(d/dx sin (x^2) )
Now, using the fundamental theorem of calculus:
d/dx int_0^x sin (t^2) dt = sin(x^2)
And,
d/dx sin(x^2) = 2xcos(x^2)
And so:
L = lim_(x rarr 0) sin(x^2)/(2xcos(x^2) )
Again this is of an indeterminate form
L = lim_(x rarr 0) (d/dx sin(x^2))/(d/dx 2xcos(x^2) )
\ \ = lim_(x rarr 0) (2xcos(x^2))/(2cos(x^2)-4x^2sin(x^2) )
Which, we can evaluate:
L = (0)/(2-0 ) = 0