What is the value of F'(x) if F(x) = int_0^sinxsqrt(t)dt ?

1 Answer
Jan 21, 2017

:. F'(x)=(sqrtsinx)(cosx).

Explanation:

F(x)=int_0^sinx sqrttdt

because, intsqrttdt=intt^(1/2)dt=t^(1/2+1)/(1/2+1)=2/3t^(3/2)+c,

:. F(x)=[2/3t^(3/2)]_0^sinx

:. F(x)=2/3sin^(3/2)x

:. F'(x)=2/3[{(sinx)}^(3/2)]'

Using the Chain Rule, F'(x)=2/3[3/2(sinx)^(3/2-1)]d/dx(sinx)

=(sinx)^(1/2)(cosx)

:. F'(x)=(sqrtsinx)(cosx).

Enjoy Maths.!